

03.1:

Arrange the following metals in the order in which they displace each other from the solution of their salts. Al, Cu, Fe, Mg and Zn

Answer:

According to their reactivity, the given metals replace the others from their salt solutions in the said order: Mg, Al, Zn, Fe, Cu.

Mg: Al: Zn: Fe: Cu

Q 3.2:

Given the standard electrode potentials,

K+/K = -2.93V

Ag+/Ag = 0.80V

Hg2+/Hg = 0.79V

Mg2+/Mg = -2.37 V, Cr3+/Cr = -0.74 V

Arrange these metals in their increasing order of reducing power.

Anc:

The reducing power increases with the lowering of reduction potential. In order of given standard electrode potential (increasing order): $K^+/K < Mg^{2+}/Mg < Cr^{3+}/Cr < Hg^{2+}/Hg < Ag^{+}/Ag$

Thus, in the order of reducing power, we can arrange the given metals as Ag< Hg < Cr < Mg < K

03.3:

Depict the galvanic cell in which the reaction

Zn(s)+2Ag+(aq) →Zn2+(aq)+2Ag(s) takes place. Further show:

- (i) Which of the electrode is negatively charged?
- (ii) The carriers of the current in the cell.
- (iii) Individual reaction at each electrode.

Ans:

The galvanic cell in which the given reaction takes place is depicted as:

$$Zn_{(s)}|Zn_{(aq)}^{2+}||Ag_{(aq)}^{+}|Ag_{(s)}^{-}|$$

- (i) The negatively charged electrode is the Zn electrode (anode)
- (ii) The current carriers in the cell are ions. Current flows to zinc from silver in the external circuit.
- (iii) Reaction at the anode is given by:

$$Zn_{(s)} o ~Zn_{(aq)}^{2+} + ~2e^-$$

Reaction at the anode is given by:

$$Ag^+_{(aq)} + e^- \rightarrow Ag_{(s)}$$

Q 3.4:

Calculate the standard cell potentials of galvanic cell in which the following reactions take place:

- (i) $2Cr(s) + 3Cd2+(aq) \rightarrow 2Cr3+(aq) + 3Cd$
- (ii) Fe2+(aq) + Ag+(aq) \rightarrow Fe3+(aq) + Ag(s)

Calculate the \(\Delta \text{rGJ} \) and equilibrium constant of the reactions.

Ans:

(i)
$$E^{\Theta}_{Cr^{3+}/Cr}$$
 = 0.74 V

$$E^{\Theta}_{Cd^{2+}/Cd}$$
 = -0.40 V

The galvanic cell of the given reaction is depicted as:

$$Cr_{(s)}|Cr_{(aq)}^{3+}||Cd_{aq}^{2+}|Cd_{(s)}$$

Now, the standard cell potential is

$$E_{cell}^{\Theta} = E_{g}^{\Theta} - E_{L}^{\Theta}$$

$$= -0.40 - (-0.74)$$

$$= + 0.34 \text{ V}$$

In the given equation, n = 6

 $F = 96487 \text{ C mol}^{-1}$

$$E_{cell}^{\Theta}$$
 = + 0.34 V

Then, $\Delta_r G^\Theta$ = -6 × 96487 C mol $^{-1}$ × 0.34 V

Again,

$$\Delta_r G^{\Theta} = -RT lnK \ \Delta_r G^{\Theta} = -2.303 RT lnK \ logk = \frac{\Delta_r G}{2.303 RT} = \frac{-196.83 \times 10^3}{2.303 \times 8.314 \times 298}$$

$$= 34.496$$

K = antilog $(34.496) = 3.13 \times 10^{34}$

The galvanic cell of the given reaction is depicted as:

$$Fe_{(aq)}^{2+}|Fe_{(aq)}^{3+}||Ag_{(aq)}^{+}|Ag_{(s)}$$

Now, the standard cell potential is

$$E_{cell}^{\Theta} = \, E_g^{\Theta} - \, E_L^{\Theta}$$

Here, n = 1.

Then,
$$\Delta_t G^0 = \, -nFE^0_{cell}$$

$$= -1 \times 96487 \text{ C mol}^{-1} \times 0.03 \text{ V}$$

Again,
$$\Delta_t G^0 = -2.303RT~lnK~lnK = rac{\Delta_t G}{2.303RT} = rac{-2894.61}{2.303 imes 8.314 imes 298}$$

K = antilog (0.5073)

= 3.2 (approximately)

Q 3.5:

Write the Nernst equation and emf of the following cells at 298 K:

- (i) Mg(s)|Mg2+(0.001M)||Cu2+(0.0001 M)|Cu(s)
- (ii) Fe(s)|Fe2+(0.001M)||H+(1M)|H2(g)(1bar)| Pt(s)
- (iii) Sn(s)|Sn2+(0.050 M)||H+(0.020 M)|H2(g) (1 bar)|Pt(s)
- (iv) Pt(s)|Br-(0.010 M)|Br2(I)||H+(0.030 M)|H2(g) (1 bar)|Pt(s).

Answer

(i) For the given reaction, the Nernst equation can be given as:

$$E_{cell} = E_{cell}^0 - rac{0.591}{n} log rac{[Mg^{2+}]}{[Cu^{2+}]} = 0.34 - (-2.36) - rac{0.0591}{2} log rac{0.001}{0.0001} \ 2.7 - rac{0.0591}{2} log 10$$

$$= 2.7 - 0.02955$$

- = 2.67 V (approximately)
- (ii) For the given reaction, the Nernst equation can be given as:

$$E_{cell} = \, E_{cell}^0 - rac{0.591}{n} log rac{[Fe^{2+}]}{[H^+]^2}$$

$$= 0 - (-0.14) - \frac{0.0591}{n} log \frac{0.050}{(0.020)^2}$$

- = 0.52865 V
- = 0.53 V (approximately)
- (iii) For the given reaction, the Nernst equation can be given as:

$$E_{cell} = E_{cell}^0 - \frac{0.591}{n} log \frac{[Sn^{2+}]}{[H^+]^2}$$

$$= 0 - (-0.14) - \frac{0.591}{2} log \frac{0.050}{(0.020)^2}$$

- $= 0.14 0.0295 \times log125$
- = 0.14 0.062
- = 0.078 V
- = 0.08 V (approximately)
- (iv) For the given reaction, the Nernst equation can be given as:

$$E_{cell} = E_{cell}^0 - \frac{0.591}{n} log \frac{1}{[Br^-]^2[H^+]^2}$$

= 0 - 1.09 -
$$\frac{0.591}{2}log\frac{1}{(0.010)^2(0.030)^2}$$

= -1.09 - 0.02955 x
$$log \frac{1}{0.00000009}$$

= -1.09 - 0.02955 x
$$log \frac{1}{9 \times 10^{-8}}$$

= -1.09 - 0.02955 x
$$log(1.11 \times 10^7)$$

$$= -1.09 - 0.02955 \times (0.0453 + 7)$$

$$= -1.09 - 0.208$$

$$= -1.298 V$$

Q 3.6:

In the button cells widely used in watches and other devices the following reaction takes place:

$$\begin{split} Zn_{(s)}^{2} & \longrightarrow Zn^{2s}_{(sq)}^{2} + 2e^{sc} : E^{0} = 0.76V \\ & Ag_{2}O_{(s)} + H_{2}O_{(f)} + 2e^{sc} \longrightarrow 2Ag_{(s)}^{2} + 2OH^{s}_{(6q)}^{2} : E^{0} = 0.344 \text{ V} \\ & Zn_{(s)} + Ag_{2}O_{(s)} + H_{2}O_{(f)}^{2} \longrightarrow Zn^{2s}_{(6q)}^{2} + 2Ag_{(s)}^{2} + 2OH^{s}_{(6q)}^{2} : E^{0} = 1.104 \text{ V} \end{split}$$

Determine Δr GJ and EJ for the reaction.

Ans:

$$E^0 = 1.104 \text{ V}$$

We know that,

$$\Delta_r G^{\Theta} = -nFE^{\Theta}$$

$$= -2 \times 96487 \times 1.04$$

$$= -213.04 \text{ kJ}$$

Q 3.7:

Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.

Answer

The conductivity of a solution is defined as the conductance of a solution of 1 cm in length and area of cross-section 1 sq. cm. Specific conductance is the inverse of resistivity and it is represented by the symbol κ . If ρ is resistivity, then we can write:

$$k = \frac{1}{a}$$

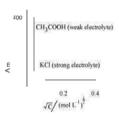
At any given concentration, the conductivity of a solution is defined as the unit volume of solution kept between two platinum electrodes with the unit area of cross-section at a distance of unit length.

$$G=\,krac{lpha}{l}=\,k imes\,1=\,k$$
 [Since a = 1 , l = 1]

When concentration decreases there will a decrease in Conductivity. It is applicable for both weak and strong electrolyte. This is because the number of ions per unit volume that carry the current in a solution decreases with a decrease in concentration.

Molar conductivity -

Molar conductivity of a solution at a given concentration is the conductance of volume V of a solution containing 1 mole of the electrolyte kept between two electrodes with the area of cross-section A and distance of unit length.


$$\Lambda_m = k \frac{A}{l}$$

Now, I = 1 and A = V (volume containing 1 mole of the electrolyte).

$$\Lambda_m = kV$$

Molar conductivity increases with a decrease in concentration. This is because the total volume V of the

solution containing one mole of the electrolyte increases on dilution. The variation of Λ_m with \sqrt{c} for strong and weak electrolytes is shown in the following plot :

Q 3.8:

The conductivity of 0.20 M solution of KCl at 298 K is 0.0248 S cm-1. Calculate its molar conductivity

Ans:

Given,
$$\kappa = 0.0248 \, \text{S cm}^{-1} \, \text{c}$$

= 0.20 M

Molar conductivity,
$$\Lambda_m = {k \times 1000 \atop c} {0.0248 \times 1000 \atop 0.2}$$

= 124 Scm²mol⁻¹

0 3.9:

The resistance of a conductivity cell containing 0.001M KCl solution at 298 K is 1500 Ω . What is the cell constant if conductivity of 0.001M KCl solutionat 298 K is 0.146 × 10–3 S cm–1

Answer

Given,

Conductivity, $k = 0.146 \times 10^{-3} \text{ S cm} - 1$

Resistance, R = 1500Ω

Cell constant = $k \times R$

$$= 0.146 \times 10^{-3} \times 1500$$

 $= 0.219 \text{ cm}^{-1}$

Q 3.10:

The conductivity of sodium chloride at 298 K has been determined at different concentrations and the results are given below:

Concentration/M 0.001

$$10^2 \times k/S m^{-1}$$
 1.237 11.85 23.15 55.53 106.74

Calculate Λm for all concentrations and draw a plot between Λm and c½. Find the value of 0 Λ m.

Ans:

Given.

$$\kappa = 1.237 \times 10^{-2} \text{ S m} - 1. \text{ c} = 0.001 \text{ M}$$

Then,
$$\kappa = 1.237 \times 10^{-4} \,\mathrm{S}\,\mathrm{cm}^{-1}$$
, $c^{1/2} = 0.0316 \,\mathrm{M}^{1/2}$

$$\Lambda_m = \frac{k}{c} = \frac{1.237 \times 10^{-4} S \ cm^{-1}}{0.001 \ mol \ L^{-1}} \times \frac{1000 \ cm^{-1}}{L}$$

 $= 123.7 \text{ S cm}^2 \text{ mol}^{-1}$

Given,

$$\kappa = 11.85 \times 10^{-2} \text{ S m}^{-1}, c = 0.010 \text{ M}$$

Then,
$$\kappa = 11.85 \times 10^{-4} \, \mathrm{S \, cm^{-1}}$$
, $c^{1/2} = 0.1 \, \mathrm{M}^{1/2}$

$$\Lambda_m = rac{k}{c} = rac{11.85 imes 10^{-4} S \ cm^{-1}}{0.010 \ mol \ L^{-1}} imes rac{1000 \ cm^{-1}}{L}$$

 $= 118.5 \text{ S cm}^2 \text{ mol}^{-1}$

Given,

$$\kappa = 23.15 \times 10^{-2} \text{ S m}^{-1}, c = 0.020 \text{ M}$$

Then,
$$\kappa = 23.15 \times 10^{-4} \,\mathrm{S} \,\mathrm{cm}^{-1}$$
, $c^{1/2} = 0.1414 \,\mathrm{M}^{1/2}$

$$\Lambda_m = rac{k}{c} = rac{23.15 imes 10^{-4} S \ cm^{-1}}{0.020 \ mol \ L^{-1}} imes rac{1000 \ cm^{-1}}{L}$$

 $= 115.8 \text{ S cm}^2 \text{ mol}^{-1}$

Given,

$$\kappa = 55.53 \times 10^{-2} \text{ S m}^{-1}, c = 0.050 \text{ M}$$

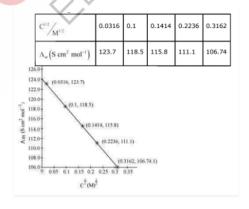
Then,
$$\kappa = 55.53 \times 10^{-4} \, \text{S cm}^{-1}$$
, $c^{1/2} = 0.2236 \, \text{M}^{1/2}$

$$\Lambda_m = \frac{k}{c} = \frac{106.74 \times 10^{-4} S \ cm^{-1}}{0.050 \ mol \ L^{-1}} \times \frac{1000 \ cm^{-1}}{L}$$

= 111.1 1 S cm² mol⁻¹

Given,

$$\kappa = 106.74 \times 10^{-2} \text{ S m}^{-1}, c = 0.100 \text{ M}$$


Then,
$$\kappa = 106.74 \times 10^{-4} \,\mathrm{S \, cm^{-1}}, \, c^{1/2} = 0.3162 \,\mathrm{M}^{1/2}$$

$$\Lambda_m = \frac{k}{c} = \frac{106.74 \times 10^{-4} S \ cm^{-1}}{0.100 \ mol \ L^{-1}}$$

 $\frac{1000~cm}{L}$

 $= 106.74 \, \mathrm{S} \, \mathrm{cm}^2 \, \mathrm{mol}^{-1}$

Now, we have the following data:

Since the line interrupts Λ_m at 124.0 S cm² mol⁻¹, Λ_m^0 = 124.0 S cm² mol⁻¹

Q 3.11:

Conductivity of 0.00241 M acetic acid is $7.896 \times 10-5$ S cm-1. Calculate its molar conductivity. If 0 Λ m for acetic acid is 390.5 S cm2 mol-1, what is its dissociation constant?

Ans:

Given,
$$\kappa = 7.896 \times 10^{-5} \text{ S m}^{-1} \text{ c}$$

= 0.00241 mol L⁻¹

Then, molar conductivity, $\Lambda_m=rac{k}{c}$

=
$$\frac{7.896 \times 10^{-5} Scm^{-1}}{0.00241 \ mol \ L^{-1}} \times \frac{1000 cm^3}{L}$$

 $= 32.76 \text{S cm}^2 \text{ mol}^{-1}$

$$\Lambda_m^0 = 390.5\,{
m S\,cm^2\,mol^{-1}}$$

Again,

$$lpha=rac{\Lambda_m}{\Lambda_m^0}$$

= =
$$\frac{32.76~S~cm^2~mol^{-1}}{390.5~S~cm^2~mol^{-1}}$$

Now,

= 0.084

Dissociation constant, $K_a=rac{clpha^2}{(1-lpha)}$

$$= \ \frac{(0.00241 \ mol \ L^{-1})(0.084)^2}{(1-0.084)}$$

$$= 1.86 \times 10^{-5} \text{ mol L}^{-1}$$

Q 3.12:

How much charge is required for the following reductions:

- (i) 1 mol of Al3+ to Al?
- (ii) 1 mol of Cu2+ to Cu?
- (iii) 1 mol of MnO4- to Mn2+?

Ans:

(i)
$$Al^{3+}+3e^-
ightarrow\ Al$$

Required charge = 3 F

$$= 3 \times 96487 C$$

(ii)
$$Cu^{2+}+2e^{-}
ightarrow\ Cu$$

Required charge = 2 F

(iii)
$$MnO_4^-
ightarrow Mn^{2+}$$

i.e
$$Mn^{7+}+5e^-
ightarrow\ Mn^{2+}$$

Required charge = 5 F

 $= 5 \times 96487 C$

= 482435 C

Q 3.13:

How much electricity in terms of Faraday is required to produce

(i) 20.0 g of Ca from molten CaCl2?

(ii) 40.0 g of Al from molten Al2O3?'

Ans:

(i) From given data,

$$Ca^{2+} + 2e^{-} \rightarrow Ca$$

Electricity required to produce 40 g of calcium = 2 F

Therefore, electricity required to produce 20 g of calcium = (2 x 20)/ 40 F

= 1 F

(ii) From given data,

$$Al^{3+} + 3e^- \rightarrow Al$$

Electricity required to produce 27 g of Al = 3 F

Therefore, electricity required to produce 40 g of Al = $(3 \times 40)/27$ F

= 4.44 F

Q 3.14:

How much electricity is required in coulomb for the oxidation of

- (i) 1 mol of H2O to O2?
- (ii) 1 mol of FeO to Fe2O3?

Ans:

(i) From given data,

$$H_2O
ightarrow H_2+rac{1}{2}O_2$$

We can say that:

$$O^{2-}
ightarrow \, rac{1}{2}O_2 + \, 2e^-$$

Electricity required for the oxidation of 1 mol of H_2O to O_2 = 2 F

= 2 × 96487 C

= 192974 C

(ii) From given data,

$$Fe^{2+}
ightarrow Fe^{3+} + e^{-}$$

Electricity required for the oxidation of 1 mol of FeO to $Fe_2O_3 = 1 F$

= 96487 C

Q 3.15:

A solution of Ni(NO3)2 is electrolysed between platinum electrodes using a current of 5 amperes for 20 minutes. What mass of Ni is deposited at the cathode?

Ans:

Given,

Current = 5A

Time = $20 \times 60 = 1200 \text{ s}$

Charge = current × time

 $= 5 \times 1200$

= 6000 C

According to the reaction,

$$Ni^{2+} + \, 2e^-
ightarrow \, Ni_{(s)} + \, e^-$$

Nickel deposited by 2 × 96487 C = 58.71 g

Therefore, nickel deposited by 6000 C = $\frac{58.71 \times 6000}{2 \times 96487}g$

= 1.825 g

Hence, 1.825 g of nickel will be deposited at the cathode.

03.16

Three electrolytic cells A,B,C containing solutions of ZnSO4, AgNO3 and CuSO4, respectively are connected in series. A steady current of 1.5 amperes was passed through them until 1.45 g of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?

Ans:

According to the reaction:

$$Ag^+_{(aq)} + e^-
ightarrow Ag_{(s)}$$

i.e., 108 g of Ag is deposited by 96487 C

Therefore, 1.45 g of Ag is deposited by = $\frac{96487 \times 1.45}{107}$

= 1295.43 C

Given,

Current = 1.5 A

Time = 1295.43/1.5 s

= 863.6 s

= 864 s

= 14.40 min

Again,

$$Cu_{(aq)}^{2+} + 2e^- \rightarrow Cu_{(s)}$$

i.e., 2 × 96487 C of charge deposit = 63.5 g of Cu

Therefore, 1295.43 C of charge will deposit $\frac{63.5 \times 1295.43}{2 \times 96487}$

= 0.426 g of Cu

$$Z n^{2+}_{(aq)} + \; 2 e^- \to \; Z n_{(s)}$$

i.e., 2 × 96487 C of charge deposit = 65.4 g of Zn

Therefore, 1295.43 C of charge will deposit $\frac{65.4 \times 1295.43}{2 \times 96487}$

= 0.439 g of Zn

Q 3.17:

Using the standard electrode potentials given in Table 3.1, predict if the reaction between the following is feasible:

- (i) Fe3+(aq) and I-(aq)
- (ii) Ag+ (aq) and Cu(s)
- (iii) Fe3+ (aq) and Br- (aq)
- (iv) Ag(s) and Fe 3+ (aq)
- (v) Br2 (aq) and Fe2+ (aq).

Ans:

(i)

$$\begin{split} & Fe^{2s}_{(eq)} + e^{-c} \longrightarrow Fe^{2s}_{(eq)} & J = 2; & F^{e} = +0.77 \text{ V} \\ & 2F_{(eq)} \longrightarrow F_{(eq)} + 2e^{-c}; & F^{e} = -0.54 \text{ V} \\ & 2Fe^{2s}_{(eq)} + 2F_{(eq)} \longrightarrow 2Fe^{2s}_{(eq)} + F_{(eq)}; & F^{e} = +0.23 \text{ V} \\ \end{split}$$

$$E^{p}_{e} = Fe^{2s}_{e} = Fe$$

(ii)

E⁰ is positive, hence reaction is feasible.

(iii)

E⁰ is negative, hence reaction is not feasible.

(iv)

$$Ag_{(1)}$$
 \longrightarrow $Ag_{(4)}^{*}$ + e^{-} ; $E^{*} = -0.80 \text{ V}$
 $Fe^{2*}_{(44)}$ + e^{-} \longrightarrow $Fe^{2*}_{(44)}$: $E^{*} = +0.77 \text{ V}$

E⁰ is negative, hence reaction is not feasible.

(v)

 E^0 is positive, hence reaction is feasible.

Q 3.18:

Predict the products of electrolysis in each of the following:

- (i) An aqueous solution of AgNO3 with silver electrodes.
- (ii)An aqueous solution of AgNO3 with platinum electrodes.
- (iii) A dilute solution of H2SO4 with platinum electrodes.
- (iv) An aqueous solution of CuCl2 with platinum electrodes.

Ans:

(i) At cathode:

The following reduction reactions compete to take place at the cathode.

$$Ag^+_{(aq)} + \,e^-
ightarrow \,Ag_{(s)}$$
 ; E 0 = 0.80 V

$$H^+_{(aq)}+\,e^-
ightarrow\,rac{1}{2}H_{2(g)}$$
 ;E 0 = 0.00 V

The reaction with a higher value of E⁰ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

The Ag anode is attacked by NO_3^+ ions. Therefore, the silver electrode at the anode dissolves in the solution to form Ag^+ .

(ii) At cathode:

The following reduction reactions compete to take place at the cathode.

$$Ag^+_{(aq)} + \, e^-
ightarrow \, Ag_{(s)}$$
 ; E 0 = 0.80 V

$$H_{(aq)}^{+} + \, e^{-}
ightarrow \, rac{1}{2} H_{2(g)}$$
 ;E 0 = 0.00 V

The reaction with a higher value of E⁰ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

Since Pt electrodes are inert, the anode is not attacked by NO_3^+ ions. Therefore, ${
m OH}^-$ or NO_3^+ ions can be

oxidized at the anode. But OH $^{-}$ ions having a lower discharge potential and get preference and decompose to liberate O_2 .

$$OH^-
ightarrow OH + E^- \ 4OH^-
ightarrow \ 2H_2O + \ O_2$$

(iii) At the cathode, the following reduction reaction occurs to produce H2 gas.

$$H^+_{(aq)} + \, e^-
ightarrow \, {1 \over 2} H_{2(g)}$$

At the anode, the following processes are possible.

$$2H_2O_{(l)}
ightarrow \; O_{2(g)} + \; 4H^+_{(aa)} + \; 4e^- \; ; {
m E^0} = +1.23 \; {
m V} \qquad -- {
m (i)}$$

$$2SO_{4(ag)}^{2-}
ightarrow\ S_2O_{6(ag)}^{2-}+\ 2e^-$$
 ; E⁰ = +1.96 V $--$ (ii)

For dilute sulphuric acid, reaction (i) is preferred to produce O₂ gas. But for concentrated sulphuric acid, reaction (ii) occurs.

(iv) At cathode:

The following reduction reactions compete to take place at the cathode.

$$Cu^{2+}_{(aq)} + \, 2e^-
ightarrow \, Cu_{(s)}$$
 ; E $^{ ext{0}}$ = 0.34 V

$$H_{(aq)}^{+} + \, e^{-}
ightarrow \, rac{1}{2} H_{2(g)}$$
 ;E 0 = 0.00 V

The reaction with a higher value of takes place at the cathode. Therefore, deposition of copper will take place at the cathode.

At anode:

The following oxidation reactions are possible at the anode.

$$Cl_{(aq)}^-
ightarrow~rac{1}{2}Cl_{2(g)}+~e^-$$
 ; E $^{
m 0}$ = 1.36 V

$$2H_20_{(l)}
ightarrow \, O_{2(g)} + \, 4H^+_{(aq)} + \, e^-$$
 ; E 0 = +1.23 V

At the anode, the reaction with a lower value of E⁰ is preferred. But due to the over potential of oxygen, Cl⁻ gets oxidized at the anode to produce Cl₂ gas.

